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Effects of correlated and independent noise on signal processing in neuronal systems
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Stochastic resonance has recently received considerable attention demonstrating that noise can play a con-
structive role in signal processing. We investigate the effects of input noise on sensory processing via numeri-
cal simulation when they are independent of each other or spatially correlated in a globally coupled neuronal
network. The network exhibits a coherent behavior in the absence of stimulation. Such ongoing activity has a
remarkable influence on neuronal responses to stimuli. In the presence of a subthreshold periodic signal, the
activity averaged over neurons can convey precise information about the stimulus in the case of independent
noise. On the other hand, when the noise is correlated among the neurons, the average response is nearly as
noisy and variable as the responses of the individual neurons. Thus, the spatially correlated noise diminishes
the beneficial effects of pooling, although it can evoke synchronous firings of neurons. These suggest that
response variability in cortical activity may be closely related to the correlation in input noise.
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I. INTRODUCTION

Recently, stochastic resonance~SR! has attracted consid
erable attention and has been investigated both experim
tally and theoretically in a large variety of nonlinear system
especially in nervous systems@1#. It was demonstrated tha
the coherent responses of systems to input signals ca
enhanced in the presence of an optimal level of noise
particular, the coupling between neurons can strengthen
SR effect, improving their signal-processing capabilit
@2–4#. These imply that noise can play a constructive role
signal processing. In most previous studies, however, the
put noise for individual neurons was always considered to
independent of each other. A nontrivial question thus aris
What influence does the noise have on signal proces
when it is correlated among a group of neurons, even hig
correlated? Such an issue may be closely associated wit
so-called response variability observed in cortical activ
that is, the neural responses to repeated presentations o
same stimulus vary largely from trial to trial@5#.

Although the responses of single neurons in the vis
cortex to a repeated visual stimulus are never the same,
often assumes that the response variability represents ‘‘
ronal noise’’ and that the averaged response over some p
lations of neurons may contain precise information about
stimulus@6#. Obviously, such population coding is based
a key hypothesis that the response variation in each neur
more or less independent of that in its neighbors@5,7#. That
is, while one neuron is responding poorly to the signal, o
ers may be responding well. As a result, the averaged
sponse of all the relevant neurons will yield reliable signa
However, a number of studies have recently displayed
neuronal populations in the visual cortex can exhibit sign
cant covariance both in their spontaneous and visu
evoked activity@8–10#. For example, Arieliet al. observed
that the spontaneous activity of single neurons is highly c
related with the population activity@9#. Such a dynamically
changing pattern of activity takes place both in the prese
1063-651X/2001/63~3!/031907~9!/$15.00 63 0319
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and the absence of stimulation. Later, they further dem
strated that the evoked spatiotemporal firing patterns exh
a large variability in response to the same stimulus, and
gued that the observed activity is a linear summation of
reproducible response and the ongoing activity, wh
changes remarkably from trial to trial@10#. A stable and
precise response pattern appears only when a large nu
of individual responses are averaged. These suggest tha
response variability may result from the dynamics of t
ongoing activity, which has a remarkable impact on neuro
responses. There have been a number of studies explo
the mechanisms underlying the response variability@11–13#.

Despite the large fluctuations in response to sens
stimuli, cortical neurons can also exhibit reliable and temp
rally precise patterns of activity@14#. It was considered tha
both behaviors are related to the incidence of synchron
synaptic inputs onto the cortical neurons@11#. Clearly, such
synaptic inputs are spatially correlated among the neuron
addition, there has been the hypothesis that sensory proc
ing is most efficient when neuronal activity is decorrelated
that it conveys independent messages in a nonredun
manner@15#. This is in part supported by the results obtain
in Ref. @11#. On the other hand, it was suggested that, in
presence of correlation in response variation, one poss
reason for the neurons to carry redundant messages ma
to improve the temporal resolution in coding a dynamic va
able that can vary rapidly@12#.

Therefore, it is important to explore the conditions und
which these two different kinds of neuronal activities occ
and the characteristics of the involved signal processing.
well known that there are numerous noise sources in nerv
systems@16# and that neurons are subject to these noise
puts. Clearly, different intensities or natures of the noise w
lead to various spatiotemporal firing patterns of the neuro
Thus, in order to interpret the aforementioned experimen
phenomena, a dynamic modeling study considering vari
natures of input noise is needed. In particular, it is of inter
to investigate what roles the spatially correlated or unco
©2001 The American Physical Society07-1
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lated noise plays in signal processing within the context
the SR. Such a study may provide new insights into
effects of noise on signal transfer.

In the present paper, we investigate the cases wherein
input noise for each neuron is independent or spatially c
related in a globally coupled neuronal network subject t
subthreshold periodic signal. Both the cases exhibit the
phenomena, that is, the output signal-to-noise ratio~SNR!
first rises and then decreases as noise intensity increase
the case of independent noise, the reliable signals can
conveyed by pooling the activity of neurons. On the oth
hand, in the case of spatially correlated noise, the avera
response is nearly as noisy and unreliable as the respons
the individual neurons, and thus the beneficial effect of po
ing is diminished. These results imply that the response v
ability in cortical activity may be related to the correlation
input noise.

This paper is organized as follows. In Sec. II a mode
described. The results for the cases wherein the neurons
an identical or independent noise input are presented in
III, while those for the spatially correlated noise case
shown in Sec. IV. Finally, a conclusion is given in Sec. V

II. MODEL

We construct a globally coupled neuronal network co
posed of the Hodgkin-Huxley~HH! model neurons. The dy
namic equations for the network are described as follow

Cm

dVi

dt
52gNa

mi
3hi~Vi2VNa

!2gKni
4~Vi2VK!

2gl~Vi2Vl !1I 01s~ t !1h i~ t !1I i
syn~ t !, ~1!

dmi

dt
5

m`~Vi !2mi

tm~Vi !
, ~2!

dhi

dt
5

h`~Vi !2hi

th~Vi !
, ~3!

dni

dt
5

n`~Vi !2ni

tn~Vi !
, i 51, . . .N. ~4!

Here Vi , mi , hi , and ni are the membrane potential, th
activation and inactivation of the sodium current, and
activation of the potassium current, respectively.gNa

, gK ,

andgl are the maximal values of conductance of the sodiu
potassium, and leakage currentsVNa

, VK , and Vl are the
corresponding reversal potentials. The capacity of the m
brane isCm51 mF/cm2. The number of neurons is taken a
N5100. The auxiliary functions and the parameter valu
can be found in Ref.@17#.

Here we assume that each neuron is subject to a com
subthreshold signals(t)5A cos(2pfst) with an amplitudeA
and frequencyf s . The noise term is chosen ash i(t)5j i(t)
1x(t) with

^j i~ t !&50, ^j i~ t1!j j~ t2!&52D1d i j d~ t12t2!, ~5!
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^x~ t !&50, ^x~ t1!x~ t2!&5D2le2lut12t2u. ~6!

That is, j i(t) is taken as the independent Gaussian wh
noise, whilex(t) is the Gaussian colored noise with a co
relation timel21. Therefore, there exists correlation in noi
between the neurons,

^h i~ t1!h j~ t2!&52D1d i j d~ t12t2!1D2le2lut12t2u. ~7!

Here D1 and D2 represent the noise intensities. The abo
assumption can be interpreted as follows. There are num
ous noise sources in nervous systems@16,18# such as therma
fluctuations, the variability of membrane parameters, a
spontaneous opening or closing of ion channels. On the o
hand, neurons have synaptic inputs from those beyond
system under consideration, which may also exhibit rando
like behavior. For simplicity, all these effects can be cons
ered together, and the total noise can be represented byh i(t)
for a network consisting of a small number of neurons.

In fact, in order to compare different effects of variou
noise on neural activity, we discuss the following thr
cases.

Case I:identical noise. In this all the neurons are subjec
to an identical Gaussian white noise at any time, nam
h i(t)5j(t). This actually introduces a very strong correl
tion in noise among the neurons. It does not decay spatia
i.e., its correlation length in space is large enough. Suc
consideration is for a system wherein the number of neur
is relatively small. Clearly, when no further on-site fluctu
tion is introduced~see Case III!, the dynamics of the network
will be reduced to the single-neuron case since each ne
has the same input.

Case II:Independent (or uncorrelated) noise. In this case
the input noise for each neuron is assumed as an indepen
or uncorrelated Gaussian white noise,h i(t)5j i(t). That is,
at any time the noise is uncorrelated among the neuro
Although the same noise distribution on each neuron is
sumed, the neurons have different values of noise at the s
time.

Case III:Spatially correlated noise. When the input noise
for each neuron is set ash i(t)5j i(t)1x(t), we have spa-
tially correlated noise. Similar to Case I, the termx(t) is a
common noise input to all the neurons and introduce
strong correlation in the noise. However, such a strong c
relation becomes weak when the on-site fluctuationj i(t) is
further included for each neuron. Thus, the total effect
h i(t)5j i(t)1x(t) is to result in spatially correlated nois
inputs. Nevertheless, this correlation is obviously wea
than that in Case I. The motivation for this case is based
the idea that there may be an incidence of correlated syna
inputs from other neurons beyond the network under stu
The simplest form for such inputs could be taken as an id
tical Gaussian colored noise. Similar common inputs ha
also been suggested in Ref.@11#. For the network with a
small number of neurons, we may not need to assume
the noise correlation decays exponentially over the syst
but rather that the correlation length is large enough. But
a large network with more number of neurons, a spatial c
7-2
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EFFECTS OF CORRELATED AND INDEPENDENT NOISE . . . PHYSICAL REVIEW E 63 031907
relation length should be considered. Clearly, Case III
modulated by two noise intensitiesD1 andD2. It is reduced
to Case I ifD1!D2, since then the on-site fluctuationj i(t)
is very small and cannot destroy the strong correlation
noise. On the other hand, forD1@D2 Case III will be re-
duced to Case II as the on-site fluctuationj i(t) is very large.
It is also worth noting that, for the sake of simplicity, here
the noise intensities are described byD1 and D2 and no
further difference is made for the noise intensity on ea
neuron.

In Eq. ~1! all the neurons are assumed to be globa
coupled with any other, and the synaptic current is descri
as

I i
syn~ t !52 (

j 51,j Þ i

N
gsyn

N
a~ t2t j !~Vi2Vsyn

i j !u~Vj2Vth!,

~8!

with a(t2t j )5a(t8)5(t8/t)e2t8/t @19#. t j is the firing time
of the j th neuron when its membrane potential exceeds
firing thresholdVth5220 mV, t52 ms is the characteristi
time of excitatory postsynaptic potential.Vsyn

i j is the synaptic
reversal potential between thei th and j th neurons, and its
value is randomly taken as280 or 0 mV corresponding
respectively, to the inhibitory and the excitatory couplin
Here a fractionp is defined by the ratio of the number o
excitatory couplings to that of the total couplings. It is a
sumed that each neuron has exactly the same fractionp of its
couplings being excitatory.gsyn is the coupling strength
u(x) is the step function withu(x)51 if x>0 and u(x)
50 if x,0. The average synaptic current is

Asyn~ t !5
1

N (
i 51

N

I i
syn~ t !. ~9!

The firings of each neuron are recorded and conve
into a time series of standard pulsesUi(t) with UA51 of
width 2 ms andUB50 corresponding, respectively, to th
firing and nonfiring states. The SNR is defined
10 log10(G/B) with G andB representing the signal streng
and the mean amplitude of the background noise at the in
signal frequencyf s in the power spectrum, respectively@4#.
The output of the network can be defined as

I out~ t !5
1

N (
i 51

N

Ui~ t !, ~10!

which is also regarded as the averaged activity over the n
rons. Here we always take the output of the first neur
denoted byU(t), as a representative for the responses of
individual neurons within the network. The SNR forI out(t),
Asyn(t), andU(t) is simply denoted bygo , gA , andgU .

The numerical integration of Eqs.~1!–~4! is done by us-
ing a second-order algorithm suggested in Ref.@20# and the
integration step is taken as 0.03 ms. A long transient is
carded and the final result is obtained by taking an aver
over 50 different realizations of noise seeds.
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Now let us present a general picture of the dynamics
the network in the absence of the input signal. It is noted t
for a single neuron, in the presence of only a constant biaI 0

(,I c56.2), the membrane potential can undergo a damp
oscillation to the resting potential with a frequency of 50–
Hz @21#. Such an intrinsic oscillation exerts an evident infl
ence on the system’s response to noise and/or external
nal. In the presence of noiseh i(t), the network can exhibit a
coherent oscillatory activity as well as a SR-like effect call
coherence resonance@22# due to this subthreshold intrinsi
oscillation. Figure 1 depicts the power spectrum ofI out(t).
Obviously, there exists a small peak in each curve and
peak shifts rightward as the noise intensityD increases. This
clearly demonstrates coherence resonance since the pea
flects the intrinsic oscillation, which can be activated
noise. Such noise-induced coherent activity has been fo
experimentally; for example, Ref.@9# demonstrated the co
herent spatiotemporal patterns of the ongoing activity in
cat visual cortex, where the spontaneous activity of sin
neurons is not an independent process but is activated
coherent fashion.

The inset~a! of Fig. 1 shows the frequency correspondin
to the peak in the power spectrum. It lies within the range
47–65 Hz, i.e., in theg frequency band~30 - 70 Hz!. The
inset~b! of Fig. 1 displays the time course ofI out(t), where
a coherent activity can be seen. It is emphasized that
ongoing activity is closely related to the characteristics of
noise. To this end we also depictI out(t) versus time for the
case of independent noise, i.e.,h i(t)5j i(t), in the inset~c!
of Fig. 1. While there exits some periodicity inI out(t) as
well, the firings of the neurons exhibit a weak correlation.
we shall see, the ongoing activity has a large influence
neuronal responses to stimuli.

FIG. 1. The power spectrum ofI out(t) for Case III with D1

5D25D51, 5, 20, respectively. The frequency corresponding
the peak vsD is shown in the inset~a!. I out(t) vs time withD52
for Case III and II is shown, respectively, in the insets~b! and ~c!.
It is assumed thatI 051, gsyn51, andl55 throughout the paper
The fraction of the couplings being excitatory is always 0.667, o
erwise specified elsewhere.
7-3
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III. IDENTICAL OR INDEPENDENT NOISE

Before discussing the spatially correlated noise case,
first consider two simple situations: Case I,Identical noise
with h i(t)5j(t) and Case II,Independent (or uncorrelated
noisewith h i(t)5j i(t). Such a discussion enables us to d
tinguish different roles ofj i(t) and x(t) in signal process-
ing.

Case I:Identical noise.Although this case appears som
what trivial assuming that each neuron has the same valu
the signal plus noises(t)1j(t) it is helpful to reveal some
common effects of the correlated noise on signal trans
When subject to a subthreshold signal, the neurons
evoked to fire only by noise. Here all the neurons fire sim
taneously, andI out(t) is equal toU(t). Thus, gU is also
equal togo . Figure 2~a! shows bothgo and gA versus the
noise intensityD. Both the curves basically overlap and e
hibit a typical characteristic of the SR, that is, there exists
optimal noise level (Dm52) at which the signal-detectin
capability is maximally improved. Clearly,I out(t) and
Asyn(t) present the same periodicity as illustrated in F
2~b!. I out(t) takes a value of 1 andAsyn(t) has a negative
value@23# only when all the neurons fire synchronously, ot
erwise both take a value of zero. In the case of low no
level, since the effective stimulus strength is small, the
ings of the neurons are often separated by several dri
cycles, i.e., the so-called skipping phenomenon@24#. This
results in a low value of the SNR. AsD increases, the dis
charge rate increases and the firings are phase locked t
signal, although there still exists some skipping in firin
Therefore, the SNR rises quickly and reaches its maxim
For the case of high noise level, while the neurons nearly
every stimulus cycle, the coherence of the firings with
signal is gradually degraded. The firing time with respect
the signal is widely distributed within one period of the si
nal. The SNR thus drops fast.

FIG. 2. For Case I witĥj(t1)j(t2)&52Dd(t12t2). ~a! go and
gA vs the noise intensityD. ~b! The input signal together with the
biass(t)1I 0, the output of the networkI out(t), and the mean syn
aptic currentAsyn(t) vs time forD52. The signal is always taken
asA50.9 andf s550 Hz, otherwise specified elsewhere.
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It is noted that the present case is in fact equivalent to
single neuron case, although there exist the couplings
tween neurons. As stated above,Asyn(t) exhibits the
d-function like behavior with a nonzero value only when t
neurons discharge spikes synchronously. This affects o
the magnitude of the membrane potential after it exceeds
threshold. Thus, the firing dynamics of the network is t
same as in the single unit case. Therefore, the averaged
tivity over the neurons is identical to the responses of
individual neurons, and contains no more information ab
the stimulus than the individual responses. If the white no
is replaced with the colored noise, i.e.,h i(t)5x(t), a similar
conclusion can be drawn. In brief, when all the neurons
evoked with an identical noise, the coupling does not i
prove the capability of sensory processing for the netw
and the averaged response is as noisy as the individua
sponses. Thus, it is generally assumed that the input nois
each neuron is not the same.

Case II:Independent (or uncorrelated) noise. In this case,
since the input noise for each neuron is uncorrelated;
firings of the neurons are not synchronous in general. Ho
ever, owing to the couplings between neurons, the firing
havior may be correlated and the system could exhibit so
cooperative dynamical effects. Figure 3~a! plots the SNR
versus the noise intensity. Apparently, these curves prese
typical SR characteristic, i.e., first a rise and then a drop. T
curves forgo andgA remain very close, implying thatI out(t)
and Asyn(t) exhibit a similar periodicity. Note thatgo is
much larger thangU . This means that the coupling can e
hance the signal processing as reported in Refs.@2–4#. On
the other hand, it also implies that the average activity c
better reflect the signal or contain more information ab
the stimulus when the noise in each neuron is independ
This can also be seen in Fig. 3~b!.

In comparison with Fig. 2~b! ~for the same noise inten
sity!, the neurons fire spikes more frequently because of
increase in the effective stimulus strength, while there s
exists the skipping phenomenon. Most firings occur near
maxima of the signal in each cycle, showing a high coh
ence with the signal. In contrast to skipping firings of t
neurons, bothI out(t) and Asyn(t) vary nearly periodically
with the same period as that of the signal. It is noted t
there exists a finite width in the peaks ofI out(t) meaning that
the neurons discharge spikes with a phase difference ow
to the independent noise inputs. Therefore, although the
chronization of firings in the network is weak, the avera
activity exhibits a strong correlation with the stimulus lea
ing to a large value ofgo . In other words, reliable signal
can be conveyed by pooling the activities of many neuro
This is consistent with the typical population coding
which the pooling can average out the uncorrelated p
among neuronal responses@5–7#.

Previously, Inchiosa and Bulsara have studied the co
erative effects arising from the noise and coupling in an
semble of nonlinear dynamic elements@3#. They demon-
strated that the performance of the network can be impro
by the coupling and speculated that the noise may pla
constructive role in neural sensory processing, as sho
here. Beyond these effects, in our case different phenom
7-4
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can appear, such as frequency selection by a more rea
considering for the network. Owing to the excitability of th
HH neurons, there exists subthreshold intrinsic oscillati
which can result in coherence resonance in the presenc
noise. Therefore, the network is more sensitive to the in
signal when its frequency is matchable with that of the o
going oscillatory activity. This can be seen from Fig. 3~c!
wherego has relatively large values for those signals w
frequencies within the range of 40–100 Hz. We have a
reported a similar frequency sensitivity in weak-signal det
tion based on the Hindmarsh-Rose~HR! neuronal model@4#.
The results are consistent for both the models.

Comparing the results from Cases I and II, we see t
whether the noise input to the neurons is identical or in
pendent does have a substantial influence on the averag
tivity and signal transfer.

IV. SPATIALLY CORRELATED NOISE

Now we consider a more general situation and explore
effects of spatially correlated noise on signal processing
the case ofh i(t)5j i(t)1x(t), i.e., the Case III.

We first assumeD15D25D. Clearly, in the presence o

FIG. 3. For Case II witĥ j i(t1)j j (t2)&52Dd i j d(t12t2). ~a!
go , gA , andgU vs the noise intensityD. ~b! s(t)1I 0, the response
U(t) of the first neuron,I out(t), andAsyn(t) vs time forD52. ~c!
go vs the signal frequency in the case ofD51 ~all signals have the
same amplitude!.
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both the signal and the noise, there still exists SR as see
Fig. 4~a!. For low noise level, the firings of the neurons m
be interrupted in several driving cycles. Thus there are m
peaks located at multiple integers of the signal period in
interspike interval histogram~ISIH! as shown in Fig. 4~b!.
As D increases, more firings are induced and the numbe
peaks in the ISIH largely decreases, mainly located aro
the signal period. Therefore, the SNR rises quickly. At
noise level ofDm51 ~for I 051), the firings of the neurons
are phase locked to the signal and thus the SNR take
maximum. However, asD further increases, the neurons fi
randomly with the firing time extending to the whole perio
of the signal. Thus the SNR drops. The distribution of t
firing time within one period of the signal is plotted in th
inset of Fig. 4~b!. Note that the distribution curve become
flat whenD is large.

It is noted that bothgo and the difference in the SNR
between the average activity and the responses of the
vidual neurons, i.e.,go2gU , become small compared t
Case II. This can be interpreted as follows. Just as illustra
in Fig. 4~c!, for D52 most firings still occur around the
maxima of the signal@here the discharge rate is slight

FIG. 4. For Case III withD15D25D. ~a! go , gA , andgU vs
the noise intensityD. ~b! The normalized number of spikes withi
the bins vs the interspike interval. The inset is the normalized nu
ber of spikes vs the firing time relative to the signal within o
period of the signal.~c! s(t)1I 0 , U(t), I out(t), andAsyn(t) vs time
for D52.
7-5
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FENG LIU, BAMBI HU, AND WEI WANG PHYSICAL REVIEW E 63 031907
higher than in Fig. 3~b!#. In the presence of correlation i
noise, on one hand, the effect of synchronous firings of
neurons is enhanced and the value ofI out(t) is sometimes
close to 1 corresponding to the complete synchronizat
This is also reflected in the narrow width of the peaks
I out(t). On the other hand, the peak values ofI out(t) are very
small within some driving cycles. This gives rise to the flu
tuations inI out(t) between different driving cycles just re
sembling the skipping firings of the neurons. That is,
average activity is nearly as noisy as the responses of
individual neurons leading to a small value ofgo . Thus,
I out(t) may vary largely between different realizations
noise seeds and present the response variability. In addi
althoughI out(t) is closely related toAsyn(t), there exists an
evident difference in the SNR at high noise levels. While
neurons fire randomly in each cycle, the pooling can aver
out some random components and thusgo drops slowly with
increasingD. Whereas,Asyn(t) takes a relatively large nega
tive value when a large number of neurons fire simu
neously and otherwise has a small or zero value. This ma
the fluctuation inAsyn(t) larger than that inI out(t), espe-
cially in the case of high noise levels where the neurons
more frequently. This is why the difference betweengo and
gA becomes large asD increases. Comparing Fig. 4~c! with
Fig. 3~b!, we see that the response variability is related to
correlation in input noise.

Physically, the neurons have a tendency to discha
spikes synchronously in the presence of correlation in
noise. Once a large number of neurons fire synchronou
the mean synaptic current takes a relatively large nega
value. This makes the effective stimulus strength beco
small @the time average ofAsyn(t) is equal to 0.21,0.34
20.35, corresponding, respectively, to the above descr
Cases I, II, III forD52#. Thus, the neurons may need to ta
more spatiotemporal summation of inputs to fire and can
even discharge spikes within some cycles. In addition,
ongoing activity preceding the stimulus exhibits a coher
behavior as stated above. The addition of the input signa
only to modulate the firing dynamics of the neurons@cf the
inset ~b! of Fig. 1 and Fig. 4~c!#. That is, the spontaneou
activity exerts a large influence on the neuronal respon
Therefore, it is the spatially correlated noise that leads to
poor performance of the average activity.

Figure 5 shows the maximumCm of the coefficientc(t)
of correlation betweenI out(t) and the input signals(t) ver-
sus the noise intensityD. Herec(t) is defined as

c~t!5
@s~ t !2 s̄#@ I out~ t1t!2 Ī out#

@$s~ t !2 s̄2%#1/2@$I out~ t !2 Ī out%2#1/2
~11!

with the overbar denoting an averaging over time. Clea
Cm also first rises and then decreases asD increases. This is
consistent with the noise dependence of the SNR. In orde
make a comparison, we have computedCm for all three
cases studied in this paper. For Case II the output show
strong correlation with the input signal, indicating that t
average activity can accurately convey the information ab
the stimulus. In contrast, for Cases I or III there clearly exi
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weak correlation between the mean response and the si
especially at high noise levels, e.g., forD.15. In the inset of
Fig. 5 is shown the maximum coefficientCm8 of correlation
between the responses of two different neurons, sayU(t)
andU50(t). Obviously, the neurons exhibit a larger correl
tion in their firing behavior for the case of spatially corr
lated noise than in the uncorrelated noise case. These re
are in agreement with the SNR measure.

From the point of view of signal processing, the spat
correlation in the input noise diminishes the beneficial
fects of pooling.~This has also been briefly mentioned
Ref. @25#.! The correlated noise makes the neurons prone
behave synchronously, that is, most neurons may disch
spikes simultaneously within one driving cycle and not fire
all within another. Thus, the average activity presents la
fluctuations and contains less information on the stimulus
the information is buried in the large fluctuations. On t
contrary, in the case of independent noise, while one neu
does not fire, others may discharge at the same time du
the independent noise inputs. As a consequence, pooling
activity of groups of neurons could yield reliable signals.
this sense the sensory processing might be more effic
when the input noise for the neurons is independent of e
other. It could also be inferred that the key assumption t
the averaging over the neuronal activity can contain prec
information about the stimulus is definitely based on the
pothesis that the input noise on each neuron is uncorrela

We further investigate the effects of the noise by sett
different values forD1 andD2. Figure 6~a! depicts the values
of go and gU versusD2 with a fixed value ofD1. As the
value ofD2 rises, the SNR decreases and the difference
tweengo andgU also becomes small as seen in the inset
Fig. 6~a!. Obviously, the increase ofD2 is to enhance the
correlation in the noise. ForD250, the peak values o
I out(t) are small but it varies nearly periodically leading to
large value ofgo ~and also ofgo /gU). As D2 increases, both
the discharge rate and the peak values ofI out(t) rise. ~For
smallD1 this can give rise to a first increase ingU .) But this
also reduces the coherence between the firings and the si
Thus, gU drops slightly with increasingD2. On the other
hand, no matter how small the value ofD2 is, it is possible

FIG. 5. The maximumCm of the correlation coefficient vs the
noise intensity for three cases. The inset isCm8 vs the noise intensity
for both Case II and Case III.
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that only few neurons discharge within some driving cycl
As a result,I out(t) may vary remarkably between differen
cycles, and the fluctuations may become large asD2 in-
creases. In addition, the neurons fire randomly at high n
levels. These result in the fast drop ofgo and the small
difference betweengo andgU .

Alternatively, whenD2 is kept unchanged andD1 is in-
creased,go and gU first rise and then decrease but t
change is much smaller than that shown in Fig. 6~a!. This is
clearly depicted in Fig. 6~b!. We have mentioned that th
firings of the neurons exhibit a remarkable skipping wh
D150. As D1 rises, the discharge rate increases and
correlation of firings with the signal is enhanced while t
effect of synchronous firings becomes weak. Therefore, b
go and gU rise. As D1 further rises, the neurons fire mor
frequently and the coherence of the firings with the signa
gradually degraded leading to the fall ofgU . However, the
pooling may average out some random components andgo
still rises until there exists a large random component
I out(t). These results indicate that the SNR is more sensi
to the change inD2, which is related with the extent to whic
the noise is spatially correlated. This implies that the cor
lation in the input noise plays an important role in modul
ing the firing dynamics.

We also study the effects of the coupling and the num
of neurons in the network on signal processing. Figure 7~a!
shows the SNR versus the fractionp of the couplings being
excitatory for the case ofD51. Asp increases, the discharg
rate increases and the correlation of firings with the signa
also improved giving rise to the increase ingU . For I out(t)
since most firings occur near the maxima of the signal, o
its peak values change as the value ofp varies and thusgo
varies slightly. Atp50 the value ofAsyn(t) is zero or nega-

FIG. 6. ~a! go andgU vs the noise intensityD2 with D151 and
5, respectively. The inset isgo /gU21 vsD2. ~b! go andgU vs the
noise intensityD1 with D251 and 5, respectively.
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tive corresponding, respectively, to the nonfiring and firi
states. Asp rises, the neurons fire more frequently and t
time averageĀ of Asyn(t) also increases as seen in the ins
of Fig. 7~a!. But Ā is less than zero whenp,0.5. This means
that Asyn(t) fluctuates around zero and such fluctuations
come large asp further increases leading to the drop ofgA .
Therefore, there exists a minimum aroundp50.5 with Ā
'0. If p.0.5, unless a large number of neurons are fir
simultaneously,Asyn(t) may be larger than zero and thus th
periodicity in Asyn(t) is improved. This gives rise to the
increase ingA . It is noted that there appears a small loc
maximum ofgA aroundp50.7 implying that there exists an
optimal coupling. Similar phenomena have been found
Ref. @26#.

Figure 7~b! displays the influence of the numberN of
neurons in the network. Clearly, there exists a slight cha
in go with N for Case III, whereas for Case II there is
relatively large difference, as seen in the inset of Fig. 7~b!.
For Case III, because of the strong correlation in the fir
behavior, the neurons tend to behave synchronously.I out(t)
exhibits a similar dynamical behavior while the pooling e

FIG. 7. ~a! go , gA , andgU vs the fractionp of the couplings
being excitatory in the case ofD15D25D51. The inset is the
time average ofAsyn(t) vs p. ~b! go vs the noise intensityD for the
number of neuronsN540, 100, and 200, respectively, for Case I
The inset is that for Case II.
7-7



e
ffe
t
t

fo

ca
f

o
fo
tin
e
g

fre
.

is
a

ork
ch

s. In
ged

ion
ise.
ctiv-
eu-
d.
one
dis-
nd
ns
he
u-

may
eu-
he
and

of
here
un-
mic
an
HR

ec.
on
tical
atial

ted
ys-
me

ing
409
ant
nts

a

FENG LIU, BAMBI HU, AND WEI WANG PHYSICAL REVIEW E 63 031907
fect is somewhat enhanced asN increases. For Case II, du
to the independent nature of the noise, the averaging e
apparently improves withN. These results further imply tha
in the presence of correlated noise it may be unlikely
improve the SNR by pooling more neurons to process in
mation.

When the signal frequency differs, similar phenomena
also be observed. Figure 8 shows the SNR in the case of s
5100 Hz ~with the same stimulus strength!. The results are
consistent with those in the case off s550 Hz. However,
here the corresponding values of the SNR become small
ing to the frequency sensitivity. As discussed in Sec. III
Case II, there exists a frequency sensitivity range resul
from the resonance effect. The system is more sensitiv
those signals when their frequencies fall into such a ran
Clearly, such a frequency range is related to the main
quency of the ongoing activity in the absence of stimulus

V. CONCLUSION

In this paper we have discussed the effects of input no
on signal processing when they are independent of e

FIG. 8. go , gA , andgU vs the noise intensityD for three cases
in the presence of a periodic signal withf s5100 Hz andA50.9.
.
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other or spatially correlated among the neurons. The netw
can exhibit a coherent activity without input signal and su
ongoing activity has a large impact on neuronal response
the presence of a subthreshold periodic signal, the avera
activity over the neurons can contain precise informat
about the stimulus in the case of independent no
Whereas, for the case of correlated noise, the average a
ity is nearly as noisy as the responses of the individual n
rons. Thus, the beneficial effect of pooling is diminishe
Physically, the correlation in noise makes the neurons pr
to behave synchronously, that is, most neurons may
charge spikes simultaneously within one driving cycle a
not fire at all within another. This leads to large fluctuatio
in the average activity. It also seems unlikely to improve t
performance of the average activity by pooling more ne
rons. These results suggest that the response variability
be related to the correlation in input noise among the n
rons. Our simulation results indicate that in the light of t
SNR and the correlation between the averaged activity
the signal, signal processing is more efficient in the case
independent noise. But for the case of correlated noise, t
might be potential benefits for the neurons to transmit red
dant messages, such as coding a rapidly changing dyna
variable @12#. It is stressed that the above conclusions c
also be drawn in other neuronal models, such as the
model @4#. Finally, we make a remark on the noiseh i(t)
5j i(t)1x(t) considered in this paper. As discussed in S
II, the first term describes the uncorrleated fluctuations
each neuron, while the second term describes an iden
Gaussian colored noise. Thus, the total noise has a sp
correlation among the neurons as expressed in Eq.~7!. But
this is a somewhat specific form of the spatially correla
noise. If the noise correlation decays spatially over the s
tem according to a specified law, there might appear so
new phenomena. This deserves a further study.
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