PHYSICAL REVIEW E, VOLUME 63, 031907
Effects of correlated and independent noise on signal processing in neuronal systems
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Stochastic resonance has recently received considerable attention demonstrating that noise can play a con-
structive role in signal processing. We investigate the effects of input noise on sensory processing via numeri-
cal simulation when they are independent of each other or spatially correlated in a globally coupled neuronal
network. The network exhibits a coherent behavior in the absence of stimulation. Such ongoing activity has a
remarkable influence on neuronal responses to stimuli. In the presence of a subthreshold periodic signal, the
activity averaged over neurons can convey precise information about the stimulus in the case of independent
noise. On the other hand, when the noise is correlated among the neurons, the average response is nearly as
noisy and variable as the responses of the individual neurons. Thus, the spatially correlated noise diminishes
the beneficial effects of pooling, although it can evoke synchronous firings of neurons. These suggest that
response variability in cortical activity may be closely related to the correlation in input noise.
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I. INTRODUCTION and the absence of stimulation. Later, they further demon-
strated that the evoked spatiotemporal firing patterns exhibit
Recently, stochastic resonan@R) has attracted consid- a large variability in response to the same stimulus, and ar-
erable attention and has been investigated both experimegued that the observed activity is a linear summation of the
tally and theoretically in a large variety of nonlinear systemsyeproducible response and the ongoing activity, which
especially in nervous system$]. It was demonstrated that changes remarkably from trial to trill0]. A stable and
the coherent responses of systems to input signals can Ipeecise response pattern appears only when a large number
enhanced in the presence of an optimal level of noise. If individual responses are averaged. These suggest that the
particular, the coupling between neurons can strengthen thesponse variability may result from the dynamics of the
SR effect, improving their signal-processing capabilitiesongoing activity, which has a remarkable impact on neuronal
[2—4]. These imply that noise can play a constructive role inresponses. There have been a number of studies exploring
signal processing. In most previous studies, however, the irthe mechanisms underlying the response varialilify-13.
put noise for individual neurons was always considered to be Despite the large fluctuations in response to sensory
independent of each other. A nontrivial question thus arisesstimuli, cortical neurons can also exhibit reliable and tempo-
What influence does the noise have on signal processinglly precise patterns of activityl4]. It was considered that
when it is correlated among a group of neurons, even highlypoth behaviors are related to the incidence of synchronous
correlated? Such an issue may be closely associated with tlsgnaptic inputs onto the cortical neurdridl]. Clearly, such
so-called response variability observed in cortical activity;synaptic inputs are spatially correlated among the neurons. In
that is, the neural responses to repeated presentations of taddition, there has been the hypothesis that sensory process-
same stimulus vary largely from trial to trigh]. ing is most efficient when neuronal activity is decorrelated so
Although the responses of single neurons in the visuathat it conveys independent messages in a nonredundant
cortex to a repeated visual stimulus are never the same, omeannef 15]. This is in part supported by the results obtained
often assumes that the response variability represents “nein Ref.[11]. On the other hand, it was suggested that, in the
ronal noise” and that the averaged response over some poppresence of correlation in response variation, one possible
lations of neurons may contain precise information about theeason for the neurons to carry redundant messages may be
stimulus[6]. Obviously, such population coding is based onto improve the temporal resolution in coding a dynamic vari-
a key hypothesis that the response variation in each neuron &ble that can vary rapidlj12].
more or less independent of that in its neighbd&g]. That Therefore, it is important to explore the conditions under
is, while one neuron is responding poorly to the signal, othwhich these two different kinds of neuronal activities occur
ers may be responding well. As a result, the averaged reand the characteristics of the involved signal processing. It is
sponse of all the relevant neurons will yield reliable signalswell known that there are numerous noise sources in nervous
However, a number of studies have recently displayed thatystemdq16] and that neurons are subject to these noise in-
neuronal populations in the visual cortex can exhibit signifi-puts. Clearly, different intensities or natures of the noise will
cant covariance both in their spontaneous and visuallyead to various spatiotemporal firing patterns of the neurons.
evoked activity[8—10. For example, Arieliet al. observed Thus, in order to interpret the aforementioned experimental
that the spontaneous activity of single neurons is highly corphenomena, a dynamic modeling study considering various
related with the population activity9]. Such a dynamically natures of input noise is needed. In particular, it is of interest
changing pattern of activity takes place both in the presenct investigate what roles the spatially correlated or uncorre-
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lated noise plays in signal processing within the context ofand
the SR. Such a study may provide new insights into the Aty
effects of noise on signal transfer. (x(1))=0, (x(ty)x(ty))=Drre M1t (6)

In the present paper, we investigate the cases wherein t . . . . :
input noise for each neuron is independent or spatially Corh_ﬁw_at IS, ﬁi_ft) IS t_akehn aGs the_lndeplendgnt .GaUSS'sn white
related in a globally coupled neuronal network subject to Jlollsg, W |eX(H I‘IS'ht ef ausilan colore n0|s|e .W't. a cor-
subthreshold periodic signal. Both the cases exhibit the SI‘-ée ation t'”r']eh - Therefore, there exists correlation In noise
phenomena, that is, the output signal-to-noise ré&bR) etween the neurons,
first rises and then decreases as noise intensity increases. In _ —Nty—ty]

. : . ; (1) mi(ty))=2D16;; 6(t;—ts) +Dohe M2l (7

the case of independent noise, the reliable signals can be (it mi(t2)) 196(t1 = t2) + Dy @

conveyed by pooling the activity of neurons. On the otheryere D, and D, represent the noise intensities. The above
hand, in the case of spatially correlated noise, the averagesssumption can be interpreted as follows. There are numer-
response is nearly as noisy and unreliable as the responsesgfs noise sources in nervous systé®; 18 such as thermal
the individual neurons, and thus the beneficial effect of pooly|ctuations, the variability of membrane parameters, and
ing is diminished. These results imply that the response varispontaneous opening or closing of ion channels. On the other
ability in cortical activity may be related to the correlation in hand, neurons have synaptic inputs from those beyond the
Input noise. _ _ system under consideration, which may also exhibit random-
This paper is organized as follows. In Sec. Il a model isjijke pehavior. For simplicity, all these effects can be consid-

described. The results for the cases wherein the neurons haygaq together, and the total noise can be representeg(by
an identical or independent noise input are presented in Segs 3 network consisting of a small number of neurons.

cases.
Il. MODEL Case l:identical noise In this all the neurons are subject
to an identical Gaussian white noise at any time, namely,

We construct a globally coupled neuronal network com- . :
posed of the Hodgl?in—Hu;/IeWI-ﬁ)) model neurons. The dy- 7_7i(t)_=§(t_). This actually introduces a very strong Corre_la-
. : ) ' _ tion in noise among the neurons. It does not decay spatially,
namic equations for the network are described as follows: i.e., its correlation length in space is large enough. Such a

consideration is for a system wherein the number of neurons

Cm%: — g MPhi(Vi— V) — gt (Vi — Vi) is relatively small. Clearly, when no further on-site fluctua-
dt a a tion is introducedsee Case )| the dynamics of the network
—gi(Vi= V) + 1o+ s(t)+ (D) + 1), (1) \f,'lv;”S lzre]erigtgg?ntgu?e single-neuron case since each neuron
Case ll:Independent (or uncorrelated) noisa this case
ﬂ _ m..(Vi) —m; 2) the input noise for each neuron is assumed as an independent
dt m(Vi) or uncorrelated Gaussian white noisg(t) = &(t). That is,
at any time the noise is uncorrelated among the neurons.
dh;  h.(V;)—h; Although the same noise distribution on each neuron is as-
dar TV 3 sumed, the neurons have different values of noise at the same
time.
dn. n.(V)—-n, Case III:Spatia]Iy correlated noiseVhen the input noise
rTE W i=1,...N. (4)  for each neuron is set ag(t) = &;(t) + x(t), we have spa-

tially correlated noise. Similar to Case I, the tegft) is a
common noise input to all the neurons and introduces a

HereVi, m;, h;, andn; are the membrane potential, the strong correlation in the noise. However, such a strong cor-
activation and inactivation of the sodium current, and the

activation of the potassium current, respectively,. o relation_becomes weak when the on-site fluctuatin) is
i ' 2’ °K>  further included for each neuron. Thus, the total effect of
andg, are the maximal values of conductance of the SOd'Umni(t)zgi(t)+X(t) is to result in spatially correlated noise
potassium, and leakage curreg , Vi, andV, are the inputs. Nevertheless, this correlation is obviously weaker
corresponding reversal potentials. The capacity of the menthan that in Case I. The motivation for this case is based on
brane isC,,=1 uF/cn?. The number of neurons is taken as the idea that there may be an incidence of correlated synaptic
N=100. The auxiliary functions and the parameter valuesnputs from other neurons beyond the network under study.
can be found in Refl17]. The simplest form for such inputs could be taken as an iden-
Here we assume that each neuron is subject to a commdital Gaussian colored noise. Similar common inputs have
subthreshold signad(t) = A cos(27f) with an amplitudeA  also been suggested in R¢l1]. For the network with a
and frequencyfs. The noise term is chosen ag(t) = &(t) small number of neurons, we may not need to assume that
+ x(t) with the noise correlation decays exponentially over the system,
but rather that the correlation length is large enough. But for
(&(1))=0, (&(t)¢§(t))=2D16;6(t;—tp), (5  alarge network with more number of neurons, a spatial cor-
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relation length should be considered. Clearly, Case lll is 8.0
modulated by two noise intensiti&,; andD,. It is reduced
to Case | ifD,<D,, since then the on-site fluctuati@i(t)
is very small and cannot destroy the strong correlation in
noise. On the other hand, f@,>D, Case Il will be re-
duced to Case Il as the on-site fluctuat(t) is very large.
It is also worth noting that, for the sake of simplicity, here all
the noise intensities are described By and D, and no
further difference is made for the noise intensity on each
neuron.

In Eqg. (1) all the neurons are assumed to be globally
coupled with any other, and the synaptic current is described
as
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(8) FIG. 1. The power spectrum dPY{(t) for Case Il withD,

, =D,=D=1, 5, 20, respectively. The frequency corresponding to
with a(t—t;)=a(t')=(t'/7)e”"/7[19]. t; is the firing ime  the peak veD is shown in the inseta). 1°V}(t) vs time withD=2
of the jth neuron when its membrane potential exceeds théor Case Il and Il is shown, respectively, in the inséisand (c).
firing thresholdV,,= —20 mV, 7=2 ms is the characteristic It is assumed thalt,=1, gs,,=1, and\=5 throughout the paper.
time of excitatory postsynaptic potentiM'S‘yn is the synaptic The fraction of the couplings being excitatory is always 0.667, oth-
reversal potential between thiéh andjth neurons, and its erwise specified elsewhere.
value is randomly taken as 80 or 0 mV corresponding,

respectively, to the inhibitory and the excitatory coupling.  Now let us present a general picture of the dynamics of
Here a fractionp is defined by the ratio of the number of the network in the absence of the input signal. It is noted that
excitatory couplings to that of the total couplings. .It IS as-for a single neuron, in the presence of only a constantliias

sumed that each neuron has exactly the same fraptadrits (<1.=6.2), the membrane potential can undergo a damping

coupl!ngs being excngtoryg.syn is the poupllng strength. oscillation to the resting potential with a frequency of 50—-85
H(X). is the step function WItI’ﬂ().()Il if X.;O and 6(x) Hz [21]. Such an intrinsic oscillation exerts an evident influ-
=0 if x<0. The average synaptic current is ence on the system’s response to noise and/or external sig-
N nal. In the presence of noisg(t), the network can exhibit a
Agyr(t) = % 2 1597(1). (9) coherent oscillatory activity as weII_ as a SR-like eﬁgct .caI.Ied
i=1 coherence resonan¢22] due to this subthreshold intrinsic
oscillation. Figure 1 depicts the power spectruml f(t).

The firings of each neuron are recorded and converte®bviously, there exists a small peak in each curve and the
into a time series of standard pulseg(t) with U,=1 of  peak shifts rightward as the noise intendityncreases. This
width 2 ms andUg=0 corresponding, respectively, to the clearly demonstrates coherence resonance since the peak re-
fiing and nonfiring states. The SNR is defined asflects the intrinsic oscillation, which can be activated by
10log;o(I'/B) with I' andB representing the signal strength nojse. Such noise-induced coherent activity has been found
a.nd the mean amp_litude of the background noise at the i”pléxperimentally; for example, Ref9] demonstrated the co-
signal frequencyfs in the power spectrum, respectivé¥].  herent spatiotemporal patterns of the ongoing activity in the
The output of the network can be defined as cat visual cortex, where the spontaneous activity of single
neurons is not an independent process but is activated in a
coherent fashion.

The inset(a) of Fig. 1 shows the frequency corresponding
to the peak in the power spectrum. It lies within the range of
which is also regarded as the averaged activity over the nedt7—65 Hz, i.e., in they frequency band30 - 70 H2. The
rons. Here we always take the output of the first neuroninset(b) of Fig. 1 displays the time course otY(t), where
denoted byJ(t), as a representative for the responses of the coherent activity can be seen. It is emphasized that the
individual neurons within the network. The SNR fd&"{(t), ongoing activity is closely related to the characteristics of the
Agyr(t), andU(t) is simply denoted byy,, ya, andyy . noise. To this end we also depi®“(t) versus time for the

The numerical integration of Eqél)—(4) is done by us- case of independent noise, i.e;(t) =& (t), in the inset(c)
ing a second-order algorithm suggested in R26] and the  of Fig. 1. While there exits some periodicity I?"(t) as
integration step is taken as 0.03 ms. A long transient is diswell, the firings of the neurons exhibit a weak correlation. As
carded and the final result is obtained by taking an averagee shall see, the ongoing activity has a large influence on
over 50 different realizations of noise seeds. neuronal responses to stimuli.

t 1 .
1240 =5 2 Ui, (10
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20 It is noted that the present case is in fact equivalent to the
single neuron case, although there exist the couplings be-
tween neurons. As stated abovég,(t) exhibits the
é-function like behavior with a nonzero value only when the
W neurons discharge spikes synchronously. This affects only
" T % the magnitude of the mgmbrane pc_)tential after it excegds the
Noise Intensity D (nA%cm"*) (b) threshold. Thus, the firing dynamics of the network is the

o2 same as in the single unit case. Therefore, the averaged ac-
= W/\/W\/\ANV\/\MW/\/VW\/ tivity over the neurons is identical to the responses of the
i

—

individual neurons, and contains no more information about
the stimulus than the individual responses. If the white noise
is replaced with the colored noise, i.e;(t) = x(t), a similar
conclusion can be drawn. In brief, when all the neurons are
evoked with an identical noise, the coupling does not im-
-12 prove the capability of sensory processing for the network
0 150 300 430 and the averaged response is as noisy as the individual re-
Time (ms) sponses. Thus, itis generally assumed that the input noise for
FIG. 2. For Case | Wit £(t;)£(t,))=2D&(t,—t,). (8) y,and ~ ©aCh neuron is not the same. o
ya Vs the noise intensitP. (b) The input signal together with the ~ Case Il:independent (or uncorrelated) noide this case,
biass(t) + 1, the output of the network?U{(t), and the mean syn- Since the input noise for each neuron is uncorrelated; the
aptic currentAg, (t) vs time forD=2. The signal is always taken firings of the neurons are not synchronous in general. How-

* b oo

asA=0.9 andf,=50 Hz, otherwise specified elsewhere. ever, owing to the couplings between neurons, the firing be-
havior may be correlated and the system could exhibit some
IIl. IDENTICAL OR INDEPENDENT NOISE cooperative dynamical effects. Figuré¢aBplots the SNR

versus the noise intensity. Apparently, these curves present a

Before discussing the spatially correlated noise case, wgypical SR characteristic, i.e., first a rise and then a drop. The
first consider two simple situations: Caseldentical noise  curves fory, andy, remain very close, implying thaf'(t)
with 7;(t) = £(t) and Case llJndependent (or uncorrelated) and A, (t) exhibit a similar periodicity. Note thay, is
noisewith 7;(t) = &(t). Such a discussion enables us to dis-much larger thany,. This means that the coupling can en-
tinguish different roles of;(t) and x(t) in signal process- hance the signal processing as reported in H&fs4]. On
ing. the other hand, it also implies that the average activity can

Case l:Identical noise Although this case appears some- better reflect the signal or contain more information about
what trivial assuming that each neuron has the same value ¢iie stimulus when the noise in each neuron is independent.
the signal plus noiss(t) + &(t) it is helpful to reveal some This can also be seen in Fig(i.
common effects of the correlated noise on signal transfer. In comparison with Fig. @) (for the same noise inten-
When subject to a subthreshold signal, the neurons arsity), the neurons fire spikes more frequently because of the
evoked to fire only by noise. Here all the neurons fire simul-increase in the effective stimulus strength, while there still
taneously, and°UY(t) is equal toU(t). Thus, y, is also exists the skipping phenomenon. Most firings occur near the
equal toy,. Figure Z2a) shows bothy, and y, versus the maxima of the signal in each cycle, showing a high coher-
noise intensityD. Both the curves basically overlap and ex- ence with the signal. In contrast to skipping firings of the
hibit a typical characteristic of the SR, that is, there exists ameurons, both°UY(t) and Agyr(t) vary nearly periodically
optimal noise level D,,=2) at which the signal-detecting with the same period as that of the signal. It is noted that
capability is maximally improved. Clearly]°'(t) and there exists a finite width in the peaksl8f'(t) meaning that
Asyr(t) present the same periodicity as illustrated in Fig.the neurons discharge spikes with a phase difference owing
2(b). 1°U(t) takes a value of 1 and,(t) has a negative to the independent noise inputs. Therefore, although the syn-
value[23] only when all the neurons fire synchronously, oth-chronization of firings in the network is weak, the average
erwise both take a value of zero. In the case of low noisectivity exhibits a strong correlation with the stimulus lead-
level, since the effective stimulus strength is small, the fir-ing to a large value ofy,. In other words, reliable signals
ings of the neurons are often separated by several drivingan be conveyed by pooling the activities of many neurons.
cycles, i.e., the so-called skipping phenomen@d]. This  This is consistent with the typical population coding in
results in a low value of the SNR. AB increases, the dis- which the pooling can average out the uncorrelated part
charge rate increases and the firings are phase locked to thenong neuronal responsgs-7].
signal, although there still exists some skipping in firing.  Previously, Inchiosa and Bulsara have studied the coop-
Therefore, the SNR rises quickly and reaches its maximumerative effects arising from the noise and coupling in an en-
For the case of high noise level, while the neurons nearly firsemble of nonlinear dynamic elemerit3]. They demon-
every stimulus cycle, the coherence of the firings with thestrated that the performance of the network can be improved
signal is gradually degraded. The firing time with respect toby the coupling and speculated that the noise may play a
the signal is widely distributed within one period of the sig- constructive role in neural sensory processing, as shown
nal. The SNR thus drops fast. here. Beyond these effects, in our case different phenomena
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FIG. 3. For Case Il with(£(t1)€(t5))=2D3;6(t1— ;). (@ FIG. 4. For Case Ill withD;=D,=D. (8 7, ¥, andy, vs

Yo, Ya,» @ndyy vs the noise intensit). (b) s(t) +1o, the response  he noise intensity. (b) The normalized number of spikes within
U(t) of the first neuron|°*(t), andAsy(t) vs time forD=2.(c)  the pins vs the interspike interval. The inset is the normalized num-
7o Vs the signal frequency in the cased# 1 (all signals have the  per of spikes vs the firing time relative to the signal within one
same amplitude period of the signal(c) s(t) + 1o, U(t), 1°U(t), andAg,(t) vs time
for D=2.

can appear, such as frequency selection by a more realistic
considering for the network. Owing to the excitability of the both the signal and the noise, there still exists SR as seen in
HH neurons, there exists subthreshold intrinsic oscillationFig. 4(a). For low noise level, the firings of the neurons may
which can result in coherence resonance in the presence be interrupted in several driving cycles. Thus there are many
noise. Therefore, the network is more sensitive to the inpupeaks located at multiple integers of the signal period in the
signal when its frequency is matchable with that of the on-interspike interval histograniSIH) as shown in Fig. &).
going oscillatory activity. This can be seen from Figc)3 As D increases, more firings are induced and the number of
where vy, has relatively large values for those signals with peaks in the ISIH largely decreases, mainly located around
frequencies within the range of 40-100 Hz. We have alsdhe signal period. Therefore, the SNR rises quickly. At a
reported a similar frequency sensitivity in weak-signal detecnoise level ofD,,=1 (for |,=1), the firings of the neurons
tion based on the Hindmarsh-Ro$¢R) neuronal modeJ4].  are phase locked to the signal and thus the SNR takes its
The results are consistent for both the models. maximum. However, aB further increases, the neurons fire

Comparing the results from Cases | and Il, we see thatandomly with the firing time extending to the whole period
whether the noise input to the neurons is identical or indeof the signal. Thus the SNR drops. The distribution of the
pendent does have a substantial influence on the average diting time within one period of the signal is plotted in the
tivity and signal transfer. inset of Fig. 4b). Note that the distribution curve becomes
flat whenD is large.

It is noted that bothy, and the difference in the SNR
between the average activity and the responses of the indi-
Now we consider a more general situation and explore thgidual neurons, i.e.;y,— vy, become small compared to
effects of spatially correlated noise on signal processing irCase Il. This can be interpreted as follows. Just as illustrated
the case ofy;(t) =& (t) + x(1), i.e., the Case Ill. in Fig. 4(c), for D=2 most firings still occur around the

We first assumd® ;=D,=D. Clearly, in the presence of maxima of the signalhere the discharge rate is slightly

IV. SPATIALLY CORRELATED NOISE
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higher than in Fig. @)]. In the presence of correlation in e Case Il
noise, on one hand, the effect of synchronous firings of the 0.9+ —o—Case Il
neurons is enhanced and the valuel ¥f{(t) is sometimes ——Casel
close to 1 corresponding to the complete synchronization.
This is also reflected in the narrow width of the peaks in 0.6- 03 R
1°U(t). On the other hand, the peak valued 9f(t) are very . /\\\‘:_/”‘

0.2 .

small within some driving cycles. This gives rise to the fluc- S
tuations in1°UY(t) between different driving cycles just re-
sembling the skipping firings of the neurons. That is, the
average activity is nearly as noisy as the responses of the
individual neurons leading to a small value @f. Thus,

1°UYt) may vary largely between different realizations of 0.0 : :
noise seeds and present the response variability. In addition, 0 S0 20 ,

althoughl °“(t) is closely related t&\,(t), there exists an Noise Intensity D (A /em’)

evident di_ﬁerence in th,e SNR at high noise Ieyels. While the FIG. 5. The maximunC,, of the correlation coefficient vs the
neurons fire randomly in each cycle, the pooling can averadfyise intensity for three cases. The inseC[svs the noise intensity

out some random components and thysirops slowly with ¢4 hoth Case Il and Case Il

increasingD. WhereasAg(t) takes a relatively large nega-

tive value when a large number of neurons fire simulta-weak correlation between the mean response and the signal,
neously and otherwise has a small or zero value. This makesspecially at high noise levels, e.g., fr>15. In the inset of

the fluctuation inAg (t) larger than that in°UY(t), espe- Fig. 5 is shown the maximum coefficie@, of correlation
cially in the case of high noise levels where the neurons firdbetween the responses of two different neurons, \3ét)

more frequently. This is why the difference betwegnand  andUsz(t). Obviously, the neurons exhibit a larger correla-
va becomes large &b increases. Comparing Fig(e} with  tion in their firing behavior for the case of spatially corre-
Fig. 3(b), we see that the response variability is related to thdated noise than in the uncorrelated noise case. These results
correlation in input noise. are in agreement with the SNR measure.

Physically, the neurons have a tendency to discharge From the point of view of signal processing, the spatial
spikes synchronously in the presence of correlation in theorrelation in the input noise diminishes the beneficial ef-
noise. Once a large number of neurons fire synchronouslyects of pooling.(This has also been briefly mentioned in
the mean synaptic current takes a relatively large negativRef.[25].) The correlated noise makes the neurons prone to
value. This makes the effective stimulus strength becoméehave synchronously, that is, most neurons may discharge
small [the time average of(t) is equal to 0.21,0.34, spikes simultaneously within one driving cycle and not fire at
—0.35, corresponding, respectively, to the above describedll within another. Thus, the average activity presents large
Cases |, Il, Il forD=2]. Thus, the neurons may need to take fluctuations and contains less information on the stimulus, or
more spatiotemporal summation of inputs to fire and cannothe information is buried in the large fluctuations. On the
even discharge spikes within some cycles. In addition, theontrary, in the case of independent noise, while one neuron
ongoing activity preceding the stimulus exhibits a coherentloes not fire, others may discharge at the same time due to
behavior as stated above. The addition of the input signal ithe independent noise inputs. As a consequence, pooling the
only to modulate the firing dynamics of the neurdothe  activity of groups of neurons could yield reliable signals. In
inset (b) of Fig. 1 and Fig. 4c)]. That is, the spontaneous this sense the sensory processing might be more efficient
activity exerts a large influence on the neuronal responsesvhen the input noise for the neurons is independent of each
Therefore, it is the spatially correlated noise that leads to thether. It could also be inferred that the key assumption that
poor performance of the average activity. the averaging over the neuronal activity can contain precise

Figure 5 shows the maximu@@,, of the coefficientc(7) information about the stimulus is definitely based on the hy-
of correlation betweeh®!(t) and the input signad(t) ver-  pothesis that the input noise on each neuron is uncorrelated.

0 20

0.31

10 2
D (uA’/em’)

sus the noise intensity. Herec(r) is defined as We further investigate the effects of the noise by setting
different values foD, andD,. Figure &a) depicts the values
[s(t)—s][1°Y(t+ 7)— 1°UY] of y, and vy, versusD, with a fixed value ofD,. As the
c(7)= (11  value of D, rises, the SNR decreases and the difference be-
[{s(t)—s2} ¥ {1°u(t) —|oun2 L2 tweenvy, and vy, also becomes small as seen in the inset of

Fig. 6@. Obviously, the increase db, is to enhance the
with the overbar denoting an averaging over time. Clearlycorrelation in the noise. FoD,=0, the peak values of
Cn, also first rises and then decrease®ascreases. This is 1°U(t) are small but it varies nearly periodically leading to a
consistent with the noise dependence of the SNR. In order tlarge value ofy, (and also ofy,/v). As D, increases, both
make a comparison, we have comput&g, for all three the discharge rate and the peak valued %f(t) rise. (For
cases studied in this paper. For Case Il the output shows smallD this can give rise to a first increasey .) But this
strong correlation with the input signal, indicating that thealso reduces the coherence between the firings and the signal.
average activity can accurately convey the information abouThus, vy, drops slightly with increasind,. On the other
the stimulus. In contrast, for Cases | or Ill there clearly existshand, no matter how small the value B, is, it is possible
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FIG. 6. (a) vy, andyy vs the noise intensit{p, with D;=1 and :o

5, respectively. The inset ig,/yy—1 vsD,. (b) y, andy, vs the

noise intensityD; with D,=1 and 5, respectively. 10+

—x—N=200

4 —e—N=100 Case Il
that only few neurons discharge within some driving cycles. " —— N0
As a result,1°'(t) may vary remarkably between different L oL —
0 D (uA’fem’)

cycles, and the fluctuations may become largeDagsin- ;
creases. In addition, the neurons fire randomly at high noise
levels. These result in the fast drop ¢f and the small

difference betweery, and yy, - o FIG. 7. (@ v, ya. andy, vs the fractionp of the couplings
Alternatively, when_Dz IS kept unchanged and, is in- being excitatory in the case d@,=D,=D=1. The inset is the

creased,y, and yy first rise and then decrease but the {me average oA, (1) vsp. (b) ¥, Vs the noise intensit for the

change is much smaller than that shown in Fi@) 6This is  number of neuronsl=40, 100, and 200, respectively, for Case Il.

clearly depicted in Fig. ®). We have mentioned that the The inset is that for Case |II.

firings of the neurons exhibit a remarkable skipping when

D,=0. As D, rises, the discharge rate increases and e corresponding, respectively, to the nonfiring and firing

correlation of firings with the signal is enhanced while thegiaiaq  agp rises, the neurons fire more frequently and the
effect of synchronous firings becomes weak. Therefore, botP & of A (1) also | i the inset
v, and vy, rise. AsD; further rises, the neurons fire more Ime averagei of syr(t) 8lso increases as seen in the inse

frequently and the coherence of the firings with the signal i®f Fig. 7(a). ButA is less than zero whem<0.5. This means
gradually degraded leading to the fall gf,. However, the thatAgy(t) fluctuates a_lround zero an_d such fluctuations be-
pooling may average out some random componentsjgnd Come large ag further increases leading to the dropgf.
still rises until there exists a large random component inTherefore, there exists a minimum arouper 0.5 with A
1°U(t). These results indicate that the SNR is more sensitive=0. If p>0.5, unless a large number of neurons are firing
to the change i ,, which is related with the extent to which simultaneouslyA,{(t) may be larger than zero and thus the
the noise is spatially correlated. This implies that the correperiodicity in Agy(t) is improved. This gives rise to the
lation in the input noise plays an important role in modulat-increase iny,. It is noted that there appears a small local
ing the firing dynamics. maximum ofy, aroundp=0.7 implying that there exists an
We also study the effects of the coupling and the numbeoptimal coupling. Similar phenomena have been found in
of neurons in the network on signal processing. Figue 7 Ref.[26].
shows the SNR versus the fractiprof the couplings being Figure 1b) displays the influence of the numbat of
excitatory for the case d=1. Asp increases, the discharge neurons in the network. Clearly, there exists a slight change
rate increases and the correlation of firings with the signal isn y, with N for Case Ill, whereas for Case Il there is a
also improved giving rise to the increaseyq . For 1°UY(t) relatively large difference, as seen in the inset of Figp).7
since most firings occur near the maxima of the signal, onlyFor Case Ill, because of the strong correlation in the firing
its peak values change as the valugpofaries and thugy, behavior, the neurons tend to behave synchronoli$f(t)
varies slightly. Atp=0 the value ofAs(t) is zero or nega- exhibits a similar dynamical behavior while the pooling ef-

. 10 . 2 4 20
Noise Intensity D (WA"/cm’)
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5 Case 11T other or spatially correlated among the neurons. The network
20 can exhibit a coherent activity without input signal and such
ongoing activity has a large impact on neuronal responses. In
10 the presence of a subthreshold periodic signal, the averaged
activity over the neurons can contain precise information
0 about the stimulus in the case of independent noise.
Whereas, for the case of correlated noise, the average activ-
30 ity is nearly as noisy as the responses of the individual neu-
@ 20 rons. Thus, the beneficial effect of pooling is diminished.
v Physically, the correlation in noise makes the neurons prone
& 10 to behave synchronously, that is, most neurons may dis-
lg charge spikes simultaneously within one driving cycle and
Case [ not fire at all within another. This leads to large fluctuations
12 in the average activity. It also seems unlikely to improve the
performance of the average activity by pooling more neu-
6 rons. These results suggest that the response variability may
T T, be related to the correlation in input noise among the neu-
0 5 o o rons. Our simulation results indicate that in the light of the
Noise Intensity D (1A%/em’) SNR and the correlation between the averaged activity and

the signal, signal processing is more efficient in the case of
FIG. 8. ., va, andyy vs the noise intensit for three cases independent noise. But for the case of correlated noise, there
in the presence of a periodic signal with=100 Hz andA=0.9. might be potential benefits for the neurons to transmit redun-
dant messages, such as coding a rapidly changing dynamic
fect is somewhat enhanced Hsincreases. For Case Il, due variable[12]. It is stressed that the above conclusions can
to the independent nature of the noise, the averaging effeeflso be drawn in other neuronal models, such as the HR
apparently improves witN. These results further imply that model [4]. Finally, we make a remark on the noisg(t)
in the presence of correlated noise it may be unlikely to= ¢ (t)+ x(t) considered in this paper. As discussed in Sec.
improve the SNR by pooling more neurons to process infor{|, the first term describes the uncorrleated fluctuations on
mation. each neuron, while the second term describes an identical
When the signal frequency differs, similar phenomena caGaussian colored noise. Thus, the total noise has a spatial
also be observed. Figure 8 shows the SNR in the casg of correlation among the neurons as expressed in(Bqg.But
=100 Hz (with the same stimulus strengthThe results are  this is a somewhat specific form of the spatially correlated
consistent with those in the case fbf=50 Hz. However, noise. If the noise correlation decays spatially over the sys-
here the corresponding values of the SNR become small owem according to a specified law, there might appear some
ing to the frequency sensitivity. As discussed in Sec. Ill fornew phenomena. This deserves a further study.
Case I, there exists a frequency sensitivity range resulting
from the resonance effect. The system is more sensitive to
those signals when their frequencies fall into such a range. ACKNOWLEDGMENTS
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